

AIRA International Codes Meeting June 14, 2023 Contribution from SYADEM

What we do

We develop and operate a Clinical Decision System on vaccination, able to determine the next required vaccinations for a person based upon:

- Individual situation : vulnerabilities (medical profile) and risk exposure (social and professional profile)
- Locally enforced vaccination policy
- History of administered vaccines

We complemented it with a vaccination information system where individuals and health professionals can store and share profiles and vaccination histories.

It is today massively used in France and Luxembourg.

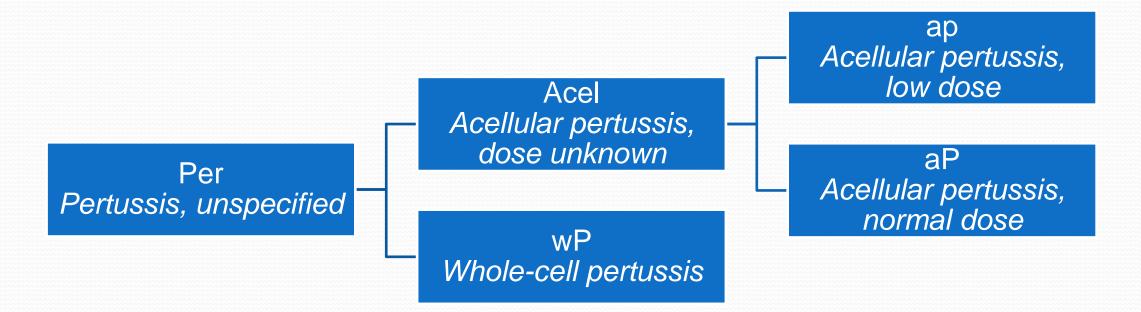
What we needed

- To capture any vaccination trail
 - Written or digital,
 - Fully explicit or degraded,
 - Whatever the date and country of the vaccination.
- To determine the vaccination agents (the valences) contained into each vaccine.

Capturing any vaccination trail

Support	Variant	Trail	NUVA Code
Written	Fully explicit	Infanrix Hexa	VAC0014
	Abbreviated	Infanrix6	
Digital	CIS (FR)	62966063	
	CNK (BE)	1665363	
Written	Valences FR	dTca	
	Valences EN	Tdap	VAC0610
Digital	CVX	115	
Written	Target disease FR	Vaccin grippe	
Digital	CVX	88	VAC0110
	SNOMED-CT	1181000221105	

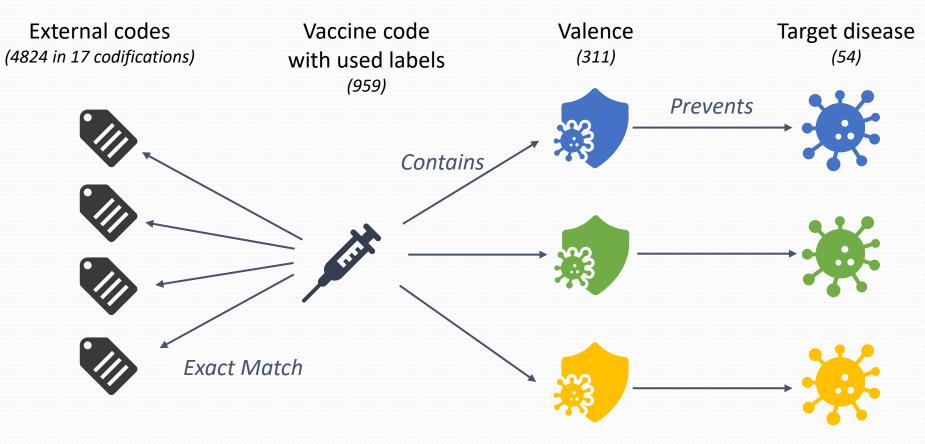
Determining the valences


A valence is not a single ingredient, but a shorthand notation used by vaccinologists for a combination and a dose of antigens against a same disease.

Examples:

- aP Acellular pertussis vaccine, standard dose
- ap Acellular pertussis vaccine, low dose
- IPV Whole inactivated trivalent polio vaccine
- mOPV1 Live attenuated monovalent oral polio vaccine type 1
 Protection is determined by the history of administered valences.

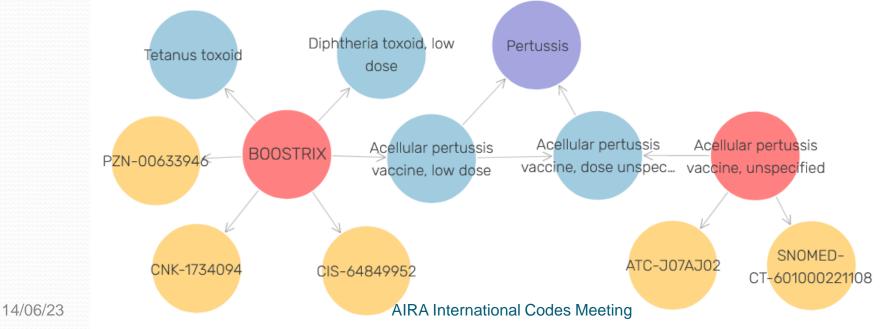
Hierarchical representation of valences


Allows to include vaccines that are not fully identified. Illustrated here with the case of pertussis valences

What valences bring

- They structure the reasoning for the decision support system
- They solve the usual issue of classification of multivalent vaccines (in ATC, J07AE = Cholera, J07AP = Typhoid, but J07AE51 = Cholera + Typhoid)
- They allow to navigate between different levels of abstraction:
 - Finding all vaccines that can be represented by J07CA01
 - Finding possible SNOMED-CT representations for REPEVAX
 - A demonstrator is available at https://nuva.mesvaccins.net/mapping

All NUVA concepts



Counted on February 10th, 2023

NUVA representations

Available:

- As an OWL/RDF graph at <u>https://smt.esante.gouv.fr/terminologie-nuva/</u> A <u>SPARQL query interface</u> is included.
- Through an exploration tool at <u>https://nuva.mesvaccins.net</u>
- A FHIR representation has also been drafted

Field experience

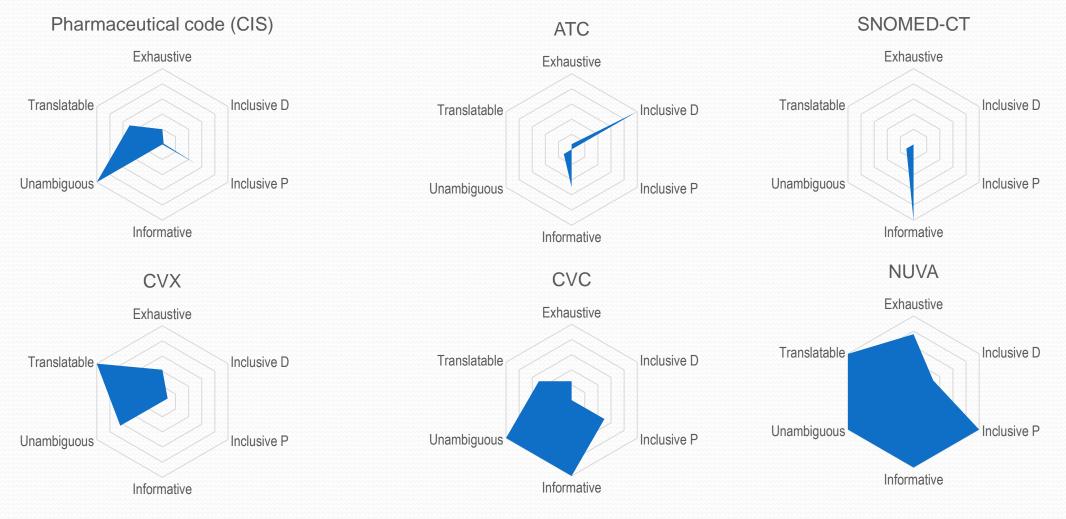
- Used in France by MesVaccins.net (2M vaccination cards), the French Army EHR and some editors relying upon our CDS.
- Used in Luxembourg for the national Electronic Vaccination Card.
- Only 40% of the records in the MesVaccins database could have been encoded with the national drug code system.

The EUVABECO project

- 14 partners from 9 EU countries
- Learn from vaccination initiatives during the COVID crisis
- Build and test implementation plans for Member States to deploy:
 - EVC A portable digital vaccination card (NUVA based)
 - CDS A vaccination decision support system (NUVA based)
 - Screening tools to address vulnerable populations
 - Models for forecasting of vaccination effectiveness
 - ePIL Digital leaflet to facilitate the transfer of vaccines stocks

Pilot projects relying upon NUVA

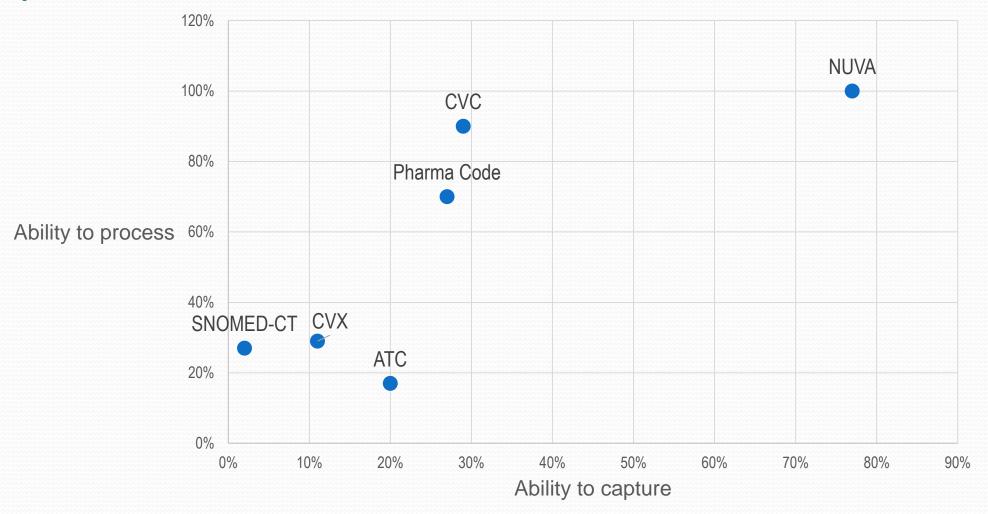
Country	CDS	EVC
Belgium	Х	Х
Germany		Х
Greece	Х	Х
Latvia	Х	Х
Poland	Х	
Portugal	Х	Х


Proposed evaluation criteria

- Exhaustiveness Against an estimated target of 1200 codes
- Ambiguousness Average number of real vaccines per code
- Informativeness 3 steps scale for the represented knowledge
- Inclusivity of paper trails 3 steps scale according to flexibility
- Inclusivity of digital trails Against a target of 50 code systems
- Translatability to external codes 3 steps scale according to flexibility
- Further aggregated into two synthetic metrics:
- Ability to capture (exhaustive, inclusive)
- Ability to process (unambiguous, informative, translatable)

Considered code systems

- Pharmaceutical codes (using the French CIS as reference)
- ATC (WHO)
- SNOMED-CT International Version
- CVX (US codification)
- Canadian Vaccine Catalogue (CVC)
- NUVA


Indicators per code system

14/06/23

AIRA International Codes Meeting

Synthetic indicators

AIRA International Codes Meeting

NUVA as a common good

- We identified the need for a pivot terminology in our study for the EU citizen's vaccination card
- We propose to make it a common good since:
 - We consider it has a value for public health
 - It will anyhow create a favorable ground for decision support systems
- It can either be used as a code system per se or a translation tool
- Euvabeco is an opportunity to use it at the European scale
- The appropriate governance structure is still to be defined

Prof. Jean-Louis Koeck +33 647 88 63 33 jlkoeck@mesvaccins.net

François KAAG +33 766 44 43 46 fkaag@mesvaccins.net